ICMS

Page: 1 2 3 4 Demo

Let Fk(S) denote the maximum utility that can be achieved from a space limitation S using only the first k items. S can take values from 0 to A.

We obtain the following recursion formula:

Fk(S) = max { vk(dk) + Fk-1(S dkak) , Fk-1(S)} as dk varies from 0 to number of tables available.

 

We now describe the stepwise solution to our problem. At every stage the columns 0 to 25 represent the space available at that stage and the rows 0 to 4 represent the number of tables we select of that game. The numbers in the table give us the utility for that particular combination of row (d = number of tables) and column (S = space available).

 

STAGE 1: Game: Baccarat Space occupied per table: 4 units Utility Values: 10, 7, 4, 1.

 

d\S

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

¾

¾

¾

¾

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

2

¾

¾

¾

¾

¾

¾

¾

¾

17

17

17

17

17

17

17

17

17

17

17

17

17

17

17

17

17

17

3

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

21

21

21

21

21

21

21

21

21

21

21

21

21

21

4

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

22

22

22

22

22

22

22

22

22

22

F1

0

0

0

0

10

10

10

10

17

17

17

17

21

21

21

21

22

22

22

22

22

22

22

22

22

22

d1

0

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

4

4

4

4

4

4

The number 10 in the 1st row and 4th column tells us that if the space available to us is only 4 units and we take only 1 table of Baccarat, then the utility will be 10. The last two rows in each table tell us the number of tables taken (d1) to get the maximum utility (F1) for each column (i.e. space available). For example, the number 21 tells us that if we have 13 units of space available then taking 3 tables of Baccarat, instead of one or two, gives us the maximum utility of 21.

 

STAGE 2: Game: Blackjack Space occupied per table: 5 units Utility Values: 9, 9, 8, 8.

d\S

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

0

0

0

0

0

10

10

10

10

17

17

17

17

21

21

21

21

22

22

22

22

22

22

22

22

22

22

1

¾

¾

¾

¾

¾

9

9

9

9

19

19

19

19

26

26

26

26

30

30

30

30

31

31

31

31

31

2

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

18

18

18

18

28

28

28

28

35

35

35

35

39

39

39

39

3

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

26

26

26

26

36

36

36

36

43

43

43

4

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

34

34

34

34

44

44

F2

0

0

0

0

10

10

10

10

17

19

19

19

21

26

28

28

28

30

35

36

36

36

39

43

44

44

d2

0

0

0

0

0

0

0

0

0

1

1

1

0

1

2

2

2

1

2

3

3

3

2

3

4

4

 

 

At stage two, Baccarat and Blackjack are considered together. The number 19 (in row 1 and column 10) is the utility when 1 Blackjack table (of utility 9) is taken and the space available is 10 units. The Blackjack table takes 5 units of space. This leaves us a space of 5 units for Baccarat tables. From the previous table F1(5) gives a utility of 10.

This gives us a total utility of 9 + 10 = 19 by taking 1 Blackjack and 1 Baccarat table.

 

STAGE 3: Game: Roulette Space occupied per table: 6 units Utility Values: 11, 11, 9, 8.

d\S

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

0

0

0

0

0

10

10

10

10

17

19

19

19

21

26

28

28

28

30

35

36

36

36

39

43

44

44

1

¾

¾

¾

¾

¾

¾

11

11

11

11

21

21

21

21

28

30

30

30

32

37

39

39

39

41

46

47

2

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

22

22

22

22

32

32

32

32

39

41

41

41

43

48

3

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

31

31

31

31

41

41

41

41

4

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

39

39

F3

0

0

0

0

10

10

11

11

17

19

21

21

22

26

28

30

32

32

35

37

39

41

41

43

46

48

d3

0

0

0

0

0

0

1

1

0

0

1

1

2

0

0,1

1

2

2

0

1

1,2

2

2,3

0

1

2

 

 

back.gif (559 bytes)   


Go to the top

Copyright © 2022 ICICI Centre for Mathematical Sciences
All rights reserved. Send us your suggestions at